Home
Class 12
MATHS
If vec d= vec axx vec b+ vec bxx vec c+...

If ` vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a` is non-zero vector and `|( vec ddot vec c)( vec axx vec b)+( vec ddot vec a)( vec bxx vec c)+( vec ddot vec b)( vec cxx vec a)|=0,` then `| vec a|=| vec b|=| vec c|` b. `| vec a|+| vec b|+| vec c|=|d|` c. ` vec a , vec b ,a n d vec c` are coplanar d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If axx(bxxc)=(axxb)xxc , then ( vec cxx vec a)xx vec b= vec0 b. vec cxx( vec axx vec b)= vec0 c. vec bxx( vec cxx vec a) vec0 d. ( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .