Home
Class 12
MATHS
For non-zero vectors vec a , vec b ,a n...

For non-zero vectors ` vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c|` holds if and only if a.` vec a* vec b=0, vec b* vec c=0` b. ` vec b* vec c=0, vec c* vec a=0` c. ` vec c* vec a=0, vec a* vec b=0` d. ` vec a* vec b=0, vec b* vec c=0, vec c* vec a=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

The non-zero vectors vec a , vec b and vec c are related by vec a=8 vec b and vec c = −7 vec b , then the angle between vec a and vec c is

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec b . vec c= vec a . vec d b. vec a . vec b= vec c .vec d c. vec b . vec c+ vec a . vec d=0 d. vec adot vec b+ vec c .vec d=0

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0