Home
Class 12
MATHS
vec a , vec ba n d vec c are unit vector...

` vec a , vec ba n d vec c` are unit vectors such that `| vec a+ vec b+3 vec c|=4.` Angle between ` vec aa n d vec bi stheta_1,` between ` vec ba n d vec c` is `theta_2` and between ` vec aa n d vec c` varies `[pi//6,2pi//3]dot` Then the maximum of `costheta_1+3costheta_2i s` a. `3` b. `4` c. `2sqrt(2)` d. `6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b ,a n d vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec ba n d vec c are non-parallel, then prove that the angel between vec aa n d vec bi s3pi//4.

If vec aa n d vec b are unit vectors such that ( vec a+ vec b).(2 vec a+3 vec b)xx(3 vec a-2 vec b)=0 , then angle between veca and vec b is a. 0 b. pi//2 c. pi d. indeterminate

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If vec a , vec b ,a n d vec c are non-zero vectors such that vec adot vec b= vec adot vec c , then find the geometrical relation between the vectors.

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2. Then find the angel between cc and xxdot

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot