Home
Class 12
MATHS
vec u , vec va n d vec w are three non-c...

` vec u , vec va n d vec w` are three non-coplanar unit vecrtors anf `alpha,betaa n dgamma` are the angles between` vec ua n d vec v , vec va n d vec w ,a n d vec wa n d vec u ,` respectively, and ` vec x , vec ya n d vec z` are unit vectors along the bisectors of the angles `alpha,betaa n dgamma` , respectively. Prove that `[ vec xxx vec y vec yxx vec z vec zxx vec x]=1/(16)[ vec u vec v vec w]^2sec^2alpha/2sec^2beta/2sec^2gamma/2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c ,a n d vec d are four non-coplanar unit vector such that vec d make equal angles with all the three vectors vec a , vec ba n d vec c , then prove that [ vec d vec a vec b]=[ vec d vec c vec b]=[ vec d vec c vec a]dot

If vec u , vec va n d vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot( vec u- vec v)xx( vec v- vec w)= vec udot vec vdotxx vec w

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot

vec aa n d vec b are two non-collinear unit vector, and vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec bdot Then | vec v| is | vec u| b. | vec u|+| vec udot vec b| c. | vec u|+| vec udot vec a| d. none of these

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

Let vec Aa n d vec B be two non-parallel unit vectors in a plane. If (alpha vec A+ vec B) bisects the internal angle between vec Aa n d vec B , then find the value of alphadot