Home
Class 12
MATHS
If vec a and vec b are orthogonal uni...

If ` vec a` and `vec b` are orthogonal unit vectors, then for a vector ` vec r` noncoplanar with ` vec a` and `vec b` , vector `rxxa` is equal to a. `[ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a)` b. `[ vec r vec a vec b]( vec a+ vec b)` c. `[ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines vec r= vec a+lambda( vec bxx vec c)a n d vec r= vec b+mu( vec cxx vec a) will intersect if a. vec axx vec c= vec bxx vec c b. vec adot vec c= vec bdot vec c c. bxx vec a= vec cxx vec a d. none of these

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

The scalar vec Adot ( ( vec B+ vec C)xx( vec A+ vec B+ vec C)) equals a. 0 b. [ vec A vec B vec C]+[ vec B vec C vec A] c. [ vec A vec B vec C] d. none of these

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .