Home
Class 12
MATHS
If the vectors vec a, vec b, vec c are n...

If the vectors `vec a, vec b, vec c` are non-coplanar and l,m,n are distinct real numbers, then [(`l vec a + m vec b + n vec c) (l vec b + m vec c + n vec a) (l vec c + m vec a + n vec b`)] = 0, implies (A) lm+mn+nl = 0 (B) l+m+n = 0 (C) `l^2 + m^2 + n^2 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3vec a-7 vec b-4 vec c ,3 vec a -2 vec b+ vec c and vec a + vec b +2 vec c are coplanar.

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

If vec a , vec ba n d vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)