Home
Class 11
MATHS
Tangents are drawn to the parabola at th...

Tangents are drawn to the parabola at three distinct points. Prove that these tangent lines always make a triangle and that the locus of the orthocentre of the triangle is the directrix of the parabola.

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent PT and the normal PN to the parabola y^2=4ax at a point P on it meet its axis at points T and N, respectively. The locus of the centroid of the triangle PTN is a parabola whose:

Tangents are drawn to the parabola y^2=4a x at the point where the line l x+m y+n=0 meets this parabola. Find the point of intersection of these tangents.

Tangents are drawn to the hyperbola 4x^2-y^2=36 at the points P and Q. If these tangents intersect at the point T(0,3) then the area (in sq units) of triangle PTQ is

Tangent are drawn from the point (-1,2) on the parabola y^2=4x . Find the length that these tangents will intercept on the line x=2.

From a point on the circle x^2+y^2=a^2 , two tangents are drawn to the circle x^2+y^2=b^2(a > b) . If the chord of contact touches a variable circle passing through origin, show that the locus of the center of the variable circle is always a parabola.

A tangent is drawn to the parabola y^2=4 x at the point P whose abscissa lies in the interval (1, 4). The maximum possible area of the triangle formed by the tangent at P , the ordinates of the point P , and the x-axis is equal to

The locus of the point of intersection of perependicular tangent of the parabola y^(2) =4ax is

Find the locus of the point from which the two tangents drawn to the parabola y^2=4a x are such that the slope of one is thrice that of the other.

The tangent at any point P onthe parabola y^2=4a x intersects the y-axis at Qdot Then tangent to the circumcircle of triangle P Q S(S is the focus) at Q is

Two tangent are drawn from the point (-2,-1) to parabola y^2=4xdot if alpha is the angle between these tangents, then find the value of tanalphadot