Home
Class 11
MATHS
Let P(x1, y1) and Q(x2, y2), y1 < 0, y2...

Let `P(x_1, y_1) and Q(x_2, y_2), y_1 < 0, y_2 < 0`, be the end points of the latus rectum of the ellipse `x^2+4y^2 = 4`. The equations of parabolas with latus rectum PQ are

Promotional Banner

Similar Questions

Explore conceptually related problems

For points P-=(x_1, y_1) and Q-=(x_2, y_2) of the coordinate plane, a new distance d(P ,Q)=|x_1x_1|+|y_1-y_2|dot Let O=(0,0) and A=(3,2) . Prove that the set of points in the first quadrant which are equidistant (with respect to the new distance) from O and A consists of the union of a line segment of finite length and an infinite ray. Sketch this set in a labelled diagram.

The line y=mx+1 touches the curves y=0x^(4)+2x^(2)+x at two points P(x_(1),y_(1)) and Q(x_(2),y_(2)) . The value of x_(1)^(2)+x_(2)^(2)+y_(1)^(2)+y_(2)^(2) is

If the tangents and normals at the extremities of a focal chord of a parabola intersect at (x_1,y_1) and (x_2,y_2), respectively, then x_1=y^2 (b) x_1=y_1 y_1=y_2 (d) x_2=y_1

The coordinates of the ends of a focal chord of the parabola y^2=4a x are (x_1, y_1) and (x_2, y_2) . Then find the value of x_1x_2+y_1y_2 .

If the chords of contact of tangents from two poinst (x_1, y_1) and (x_2, y_2) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 are at right angles, then find the value of (x_1x_2)/(y_1y_2)dot

If the circle x^2+y^2=a^2 intersects the hyperbola x y=c^2 at four points P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3), and S(x_4, y_4), then x_1+x_2+x_3+x_4=0 y_1+y_2+y_3+y_4=0 x_1x_2x_3x_4=C^4 y_1y_2y_3y_4=C^4

Find the distance between P( x_(1), y_(1) ) and Q( x_(2), y_(2) ) when : i. PQ is parallel to the y-axis, ii. PQ is parallel to the x-axis.

If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 cuts the circle x^(2)+y^(2)=a^(2) at points Q(x_(1),y_(1)) and R(x_(2),y_(2)) , then the vlaue of (1)/(y_(1))+(1)/(y_(2)) is

The equation to the chord joining two points (x_1,y_1) and (x_2,y_2) on the rectangular hyperbola xy=c^2 is: (A) x/(x_1+x_2)+y/(y_1+y_2)=1 (B) x/(x_1-x_2)+y/(y_1-y_2)=1 (C) x/(y_1+y_2)+y/(x_1+x_2)=1 (D) x/(y_1-y_2)+y/(x_1-x_2)=1

If the point (x_1+t(x_2-x_1),y_1+t(y_2-y_1)) divides the join of (x_1,y_1) and (x_2, y_2) internally, then t 1 (d) t=1