Home
Class 11
MATHS
Let (x,y) be any point on the parabola y...

Let (x,y) be any point on the parabola `y^2 = 4x`. Let P be the point that divides the line segment from (0,0) and (x,y) n the ratio 1:3. Then the locus of P is :

A

`x^(2)=y`

B

`y^(2)=2x`

C

`y^(2)=x`

D

`x^(2)=2y`

Text Solution

Verified by Experts

3
Point P(h,k) divides the line segment OR in ratio `1:3`. So, coordinates of point R are (4h,4k).
(Using ratio OP : PR = `1:3` )
Point R lies on the parabola
`:." "(4k)^(2)=4xx4hork^(2)=h`
Hence, locus is `y^(2)=x`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let O be the vertex and Q be any point on the parabola, x^2=""8y . It the point P divides the line segment OQ internally in the ratio 1 : 3, then the locus of P is :

Let O be the origin and A be the point (64,0). If P, Q divide OA in the ratio 1:2:3, then the point P is

The straight lines joining any point P on the parabola y^2=4a x to the vertex and perpendicular from the focus to the tangent at P intersect at Rdot Then the equation of the locus of R is

Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1 If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

Normals are drawn at points A, B, and C on the parabola y^2 = 4x which intersect at P. The locus of the point P if the slope of the line joining the feet of two of them is 2, is

If the two tangents drawn from a point P to the parabola y^(2) = 4x are at right angles then the locus of P is

Let P be a point on the hyperbola x^2-y^2=a^2, where a is a parameter, such that P is nearest to the line y=2xdot Find the locus of Pdot

Let P be the point on the parabola, y^2=8x which is at a minimum distance from the centre C of the circle, x^2+(y+6)^2=1. Then the equation of the circle, passing through C and having its centre at P is : (1) x^2+y^2-4x+8y+12=0 (2) x^2+y^2-x+4y-12=0 (3) x^2+y^2-x/4+2y-24=0 (4) x^2+y^2-4x+9y+18=0

If line x-2y-1=0 intersects parabola y^(2)=4x at P and Q, then find the point of intersection of normals at P and Q.