Home
Class 11
MATHS
The length of the latus rectum of the pa...

The length of the latus rectum of the parabola whose focus is `((u^2)/(2g)sin2alpha,-(u^2)/(2g)cos2alpha)` and directrix is `y=(u^2)/(2g)` is (a)`(u^2)/gcos^2alpha` (b) `(u^2)/gcos^2 2alpha` (c)`(2u^2)/gcos^2 2alpha` (d) `(2u^2)/gcos^2alpha`

A

`(u^(2))/(g)cos^(2)alpha`

B

`(u^(2))/(g)cos2alpha`

C

`(2u^(2))/(g)cos2alpha`

D

`(2u^(2))/(g)cos^(2)alpha`

Text Solution

Verified by Experts

(4) Length of latus rectum `=2xx` Distance of focus from directrix
`=2|(-(u^(2))/(2g)cos2alpha-(u^(2))/(2g))/(sqrt(1))|`
`=(2u^(2))/(g)cos^(2)alpha`
Promotional Banner

Similar Questions

Explore conceptually related problems

(cos2 x - cos2 alpha)/(cos x - cos alpha)

Which of the following is independent of alpha in the hyperbola (0 < alpha < pi/2)x^2/cos^2 alpha-y^2/sin^2alpha=1

Prove that (cos alpha+cos beta)^(2)+(sin alpha -sin beta)^(2)=4 cos^(2) ((alpha+beta)/(2))

The locus of the centre of the circle (xcos alpha + y sin alpha - a)^2 + (x sin alpha - y cos alpha - b)^2= k^2 if alpha varies, is

If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is tan^2alpha/2 (b) cot^2alpha/2 (c) tan^2alpha (d) cotalpha/2

x=sqrt(a^2cos^2alpha+b^2sin^2alpha)+sqrt(a^2sin^2alpha+b^2cos^2alpha) then x^2=a^2+b^2+2sqrt(p(a^2+b^2)-p^2) , where p is equal to (a) a^2cos^2alpha+ b^2sin^2alpha (b) a^2sin^2alpha+b^2cos^2alpha (c) (1/2)(a^2+b^2+(a^2-b^2)cos2alpha) (d) (1/2)(a^2+b^2-(a^2-b^2)cos2alpha)

If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal to (a)4 (b) 2sin^2alpha (c) -4sin^2alpha (d) 4sin^2alpha

If alpha is the nth root of unity, then 1+2alpha+3alpha^2+ ton terms equal to a. (-n)/((1-alpha)^2) b. (-n)/(1-alpha) c. (-2n)/(1-alpha)"" d. (-2n)/((1-alpha)^2)

If theta is eliminated from the equations x=a"cos"(theta-alpha) and y=bcos(theta-beta), then (x^2/a^2)+(y^2/b^2)-(2xy)/(ab)cos(alpha-beta) is equal to (a) sec^2(alpha-beta) (b) cos e c^2(alpha-beta) (c) cos^2(-beta) (d) sin^2(alpha-beta)

The value of int_0^(pi/2) sin|2x-alpha|dx, where alpha in [0,pi], is (a) 1-cos alpha (b) 1+cos alpha (c) 1 (d) cos alpha