Home
Class 12
MATHS
Find the angle between the line vec ...

Find the angle between the line ` vec r=( vec i+2 vec j- vec k)+lambda( vec i- vec j+ vec k)` and the normal to the plane ` vec rdot((2 vec i- vec j+ vec k))=4.`

Answer

Step by step text solution for Find the angle between the line vec r=( vec i+2 vec j- vec k)+lambda( vec i- vec j+ vec k) and the normal to the plane vec rdot((2 vec i- vec j+ vec k))=4. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the angle between the line vec r= hat i+2 hat j- hat k+lambda( hat i- hat j+ hat k) and the plane vec rdot(2 hat i- hat j+ hat k)=4.

Find angle theta between the vectors vec a = hat i+ hat j- hat k and vec b= hat i- hat j + hat k

If vec a=2 vec i+3 vec j- vec k , vec b=- vec i+2 vec j-4 vec ka n d vec c= vec i+ vec j+ vec k , then find thevalue of ( vec axx vec b)dot( vec axx vec c)dot

Find angle theta between the vectors vec a = hat i + hat j - hat k and vec b = hat i - hat j + hat k .

Find lambda if the vectors vec a= vec i+3 vec j+ vec k , vec b= 2 vec i- vec j- vec k and vec c= lambda vec i+7 vec j+ 3 vec k are coplanar

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

Find the angle between vec a and vec b , when vec a = hat i +3 hat j + hat k and vec b = 2 hat i - hat j - hat k

If vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k , then find the vaue of | vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec a vec bdot vec a vec cdot vec a vec cdot vec a vec cdot vec a| .

A vector vec d is equally inclined to three vectors vec a= hat i+ hat j+ hat k , vec b=2 hat i+ hat ja n d vec c=3 hat j-2 hat kdot Let vec x , vec y ,a n d vec z be thre vectors in the plane of vec a , vec b ; vec b , vec c ; vec c , vec a , respectively. Then vec xdot vec d=-1 b. vec ydot vec d=1 c. vec zdot vec d=0 d. vec rdot vec d=0,w h e r e vec r=lambda vec x+mu vec y+delta vec z