Home
Class 11
MATHS
Tangents are drawn to the ellipse (x^2)/...

Tangents are drawn to the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1,(a > b),` and the circle `x^2+y^2=a^2` at the points where a common ordinate cuts them (on the same side of the x-axis). Then the greatest acute angle between these tangents is given by (A) `tan^(-1)((a-b)/(2sqrt(a b)))` (B) `tan^(-1)((a+b)/(2sqrt(a b)))` (C) `tan^(-1)((2a b)/(sqrt(a-b)))` (D) `tan^(-1)((2a b)/(sqrt(a+b)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a tangent of slope 2 of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 is normal to the circle x^2+y^2+4x+1=0 , then the maximum value of a b is 4 (b) 2 (c) 1 (d) none of these

If x/a+y/b=sqrt(2) touches the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 , then find the eccentric angle theta of point of contact.

If the ellipse x^2/a^2+y^2/b^2=1 (b > a) and the parabola y^2 = 4ax cut at right angles, then eccentricity of the ellipse is

Tangents are drawn to the ellipse from the point ((a^2)/(sqrt(a^2-b^2)),sqrt(a^2+b^2))) . Prove that the tangents intercept on the ordinate through the nearer focus a distance equal to the major axis.

If x/a+y/b=sqrt2 touches the ellipses x^2/a^2+y^2/b^2=1 , then fin the ecentric angle theta of point of contact

A tangent is drawn to the ellipse to cut the ellipse x^2/a^2+y^2/b^2=1 and to cut the ellipse x^2/c^2+y^2/d^2=1 at the points P and Q. If the tangents are at right angles, then the value of (a^2/c^2)+(b^2/d^2) is

If a tangent to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 makes intercepts h and k on the co-ordinate axes then show that a^(2)/h^(2)+b^(2)/k^(2)=1 .

A(1/(sqrt(2)),1/(sqrt(2))) is a point on the circle x^2+y^2=1 and B is another point on the circle such that are length A B=pi/2 units. Then, the coordinates of B can be

The slopes of the common tanents of the ellipse (x^2)/4+(y^2)/1=1 and the circle x^2+y^2=3 are (a) +-1 (b) +-sqrt(2) (c) +-sqrt(3) (d) none of these