Home
Class 11
MATHS
The normal at a point P on the ellipse ...

The normal at a point `P` on the ellipse `x^2+4y^2=16` meets the x-axis at `Qdot` If `M` is the midpoint of the line segment `P Q ,` then the locus of `M` intersects the latus rectums of the given ellipse at points. (a)`(+-((3sqrt(5)))/2+-2/7)` (b) `(+-((3sqrt(5)))/2+-(sqrt(19))/7)` (c)`(+-2sqrt(3),+-1/7)` (d) `(+-2sqrt(3)+-(4sqrt(3))/7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following is equal to root(3)(-1) a. (sqrt(3)+sqrt(-1))/2 b. (-sqrt(3)+sqrt(-1))/(sqrt(-4)) c. (sqrt(3)-sqrt(-1))/(sqrt(-4)) d. -sqrt(-1)

Simplify (1)/(3 - sqrt(8)) - (1)/(sqrt(8) - sqrt(7)) + (1)/(sqrt(7) - sqrt(6)) - (1)/(sqrt(6) - sqrt(5)) + (1)/(sqrt(5) - 2)

The points on the line x=2 from which the tangents drawn to the circle x^2+y^2=16 are at right angles is (are) (a) (2,2sqrt(7)) (b) (2,2sqrt(5)) (c) (2,-2sqrt(7)) (d) (2,-2sqrt(5))

The angle between the lines joining origin to the points of intersection of the line sqrt(3)x+y=2 and the curve y^2-x^2=4 is (A) tan^(-1)(2/(sqrt(3))) (B) pi/6 (C) tan^(-1)((sqrt(3))/2) (D) pi/2

A beam of light is sent along the line x-y=1 , which after refracting from the x-axis enters the opposite side by turning through 30^0 towards the normal at the point of incidence on the x-axis. Then the equation of the refracted ray is (a) (2-sqrt(3))x-y=2+sqrt(3) (b) (2+sqrt(3))x-y=2+sqrt(3) (c) (2-sqrt(3))x+y=(2+sqrt(3)) (d) y=(2-sqrt(3))(x-1)

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (a)(0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)

int_(-1)^(1/2)(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))i se q u a lto (sqrt(e))/2(sqrt(3)+1) (b) (sqrt(3e))/2 sqrt(3e) (d) sqrt(e/3)

If tangents P Q and P R are drawn from a point on the circle x^2+y^2=25 to the ellipse (x^2)/16+(y^2)/(b^2)=1,(b (a) (sqrt(5))/4 (b) (sqrt(7))/4 (c) (sqrt(7))/2 (d) (sqrt(5))/3

Tangent of acute angle between the curves y=|x^2-1| and y=sqrt(7-x^2) at their points of intersection is (5sqrt(3))/2 (b) (3sqrt(5))/2 (5sqrt(3))/4 (d) (3sqrt(5))/4