Home
Class 11
MATHS
Let P be a point on the ellipse x^2/a^2...

Let P be a point on the ellipse `x^2/a^2+y^2/b^2=1 , 0 < b < a` and let the line parallel to y-axis passing through P meet the circle `x^2 +y^2=a^2` at the point Q such that P and Q are on the same side of x-axis. For two positive real numbers r and s, find the locus of the point R on PQ such that `PR : RQ = r : s` and P varies over the ellipse.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P be a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 of eccentricity edot If A ,A ' are the vertices and S ,S are the foci of the ellipse, then find the ratio area P S S ' ' : area A P A^(prime)dot

If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 with foci Sa n dS ' and eccentricity e , then prove that the area of S P S ' is basqrt(a^2-alpha^2)

The point of intersection of the tangents at the point P on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and its corresponding point Q on the auxiliary circle meet on the line (a) x=a/e (b) x=0 (c) y=0 (d) none of these

Find the points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 such that the tangent at each point makes equal angles with the axes.

Find the points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 such that the tangent at each point makes equal angles with the axes.

Let d be the perpendicular distance from the centre of the ellipse x^2/a^2+y^2/b^2=1 to the tangent drawn at a point P on the ellipse. If F_1 & F_2 are the two foci of the ellipse, then show the (PF_1-PF_2)^2=4a^2[1-b^2/d^2] .

The locus of mid-points of a focal chord of the ellipse x^2/a^2+y^2/b^2=1

Let P(6,3) be a point on the hyperbola parabola x^2/a^2-y^2/b^2=1 If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

Find the range of eccentricity of the ellipse x^2/a^2+y^2/b^2=1 , (where a > b) such that the line segment joining the foci does not subtend a right angle at any point on the ellipse.

Find the range of eccentricity of the ellipse x^2/a^2+y^2/b^2=1 , (where a > b) such that the line segment joining the foci does not subtend a right angle at any point on the ellipse.