Home
Class 11
MATHS
A hyperbola having the transverse axis o...

A hyperbola having the transverse axis of length `2sintheta` is confocal with the ellipse `3x^2+4y^2=12` . Then its equation is (a) `x^2cos e c^2theta-y^2sec^2theta=1` (b) `x^2sec^2theta-y^2cos e c^2theta=1` (c) `x^2sin^2theta-y^2cos^2theta=1` (d)`x^2cos^2theta-y^2sin^2theta=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

A hyperbola, having the transverse axis of length 2sin theta , is confocal with the ellipse 3x^2 + 4y^2=12 . Then its equation is

Prove: sin^4 theta - cos^4theta = 1 - 2cos^2 theta

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Solve sin^(2) theta-2 cos theta+1/4=0

Prove: sin^(8)theta-cos^(8)theta=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)thetacos^(2)theta)

If x = 2costheta- cos 2theta, y = 2sintheta -sin 2theta, find dy/dx.

(1)/(sin^(2)theta)-(cos^(2)theta)/(sin^(2) theta) =___.

Prove that cos 8 theta cos 2 theta = cos^(2) 5theta- sin^(2) 3 theta

Prove that (sec theta+cos theta) (sec theta-cos theta)=tan^(2) theta+sin^(2) theta