Home
Class 11
MATHS
If P is any point on ellipse with foci ...

If `P` is any point on ellipse with foci `S_1 & S_2` and eccentricity is `1/2` such that `/_PS_1S_2=alpha,/_PS_2S_1=beta,/_S_1PS_2=gamma` , then `cot(alpha/2), cot(gamma/2), cot(beta/2)` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If P(alpha,beta) is a point on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 with foci Sa n dS ' and eccentricity e , then prove that the area of S P S ' is basqrt(a^2-alpha^2)

P is any point lying on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb) whose foci are S and S' . If anglePSS'=alpha and anglePS'S=beta , then the value of tan.(alpha)/(2)tan.(beta)/(2) is

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If cosx-sinalphacotbetasinx=cosa , then the value of tan(x/2) is -tan(alpha/2)cot(beta/2) (b) tan(alpha/2)tan(beta/2) -cot((alphabeta)/2)tan(beta/2) (d) cot(alpha/2)cot(beta/2)

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

If sinalpha-sinbeta=1/3andcosbeta-cosalpha=1/2, show that cot(alpha+beta)/2=2/3

The foci of an ellipse are S(3,1) and S'(11,5) The normal at P is x+2y-15=0 Then point P is

Prove that [1+cot alpha-sec(alpha+pi/2)] [1+cot alpha+sec (alpha+pi/2)]=2 cot alpha .