Home
Class 11
MATHS
The length of the sides of the square wh...

The length of the sides of the square which can be made by four perpendicular tangents `P Qa n dP R` are drawn to the ellipse `(x^2)/4+(y^2)/9=1` . Then the angle subtended by `Q R` at the origin is `tan^(-1)(sqrt(6))/(65)` (b) `tan^(-1)(4sqrt(6))/(65)` `tan^(-1)(8sqrt(6))/(65)` (d) `tan^(-1)(48sqrt(6))/(455)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If from a point P , tangents P Qa n dP R are drawn to the ellipse (x^2)/2+y^2=1 so that the equation of Q R is x+3y=1, then find the coordinates of Pdot

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

Evaluate the value of tan^(-1) (-sqrt(3)) +cos^(-1) (1/(sqrt(2))) + sin^(-1) (-(sqrt(3))/2)

sum_(r=1)^nsin^(-1)((sqrt(r)-sqrt(r-1))/(sqrt(r(r+1)))) is equal to (a) tan^(-1)(sqrt(n))-pi/4 (b) tan^(-1)(sqrt(n+1))-pi/4 (c) tan^(-1)(sqrt(n)) (d) tan^(-1)(sqrt(n)+1)

If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then

If a line y=3x+1 cuts the parabola x^2-4x-4y+20=0 at Aa n dB , then the tangent of the angle subtended by line segment A B at the origin is (8sqrt(3))/(205) (b) (8sqrt(3))/(209) (8sqrt(3))/(215) (d) none of these

Find (I ) tan ^(-1) ( - sqrt(3)) (ii ) tan^(-1) ( tan (( 3pi )/(4)) (iii ) tan ( tan^(-1 ) (2019))

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))