Home
Class 11
MATHS
For the hyperbola (x^2)/(a^2)-(y^2)/(b^2...

For the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` , let `n` be the number of points on the plane through which perpendicular tangents are drawn. If `n=1,t h e ne=sqrt(2)` If `n >1,t h e n0sqrt(2)` None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 passes through the point (0,-b) and the normal at P passes through the point (2asqrt(2),0) . Then the eccentricity of the hyperbola is 2 (b) sqrt(2) (c) 3 (d) sqrt(3)

If the tangents to the parabola y^2=4a x intersect the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at Aa n dB , then find the locus of the point of intersection of the tangents at Aa n dBdot

Let d_1a n dd_2 be the length of the perpendiculars drawn from the foci Sa n dS ' of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 to the tangent at any point P on the ellipse. Then, S P : S^(prime)P= (a) d_1: d_2 (b) d_2: d_1 (c) d_1 ^2:d_2 ^2 (d) sqrt(d_1):sqrt(d_2)

Let Sa n dS ' be two foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 . If a circle described on S S^(prime) as diameter intersects the ellipse at real and distinct points, then the eccentricity e of the ellipse satisfies (a) c=1/(sqrt(2)) (b) e in (1/(sqrt(2)),1) (c) e in (0,1/(sqrt(2))) (d) none of these

If |cos^(-1)((1-x^2)/(1+x^2))|

Ifx=int_0^y(dt)/(sqrt(1+9t^2))a n d(d^2y)/(dx^2)=a y ,t h e nfin da

If tan^(-1)(a+x)/a+tan^(-1)(a-x)/a=pi/6,t h e nx^2= (a) 2sqrt(3)a (b) sqrt(3)a (c) 2sqrt(3)a^2 (d) none of these

A curve is such that the mid-point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets the y-axis lies on the line y=xdot If the curve passes through (1,0), then the curve is (a) ( b ) (c)2y=( d ) x^(( e )2( f ))( g )-x (h) (i) (b) ( j ) (k) y=( l ) x^(( m )2( n ))( o )-x (p) (q) (c) ( d ) (e) y=x-( f ) x^(( g )2( h ))( i ) (j) (k) (d) ( l ) (m) y=2(( n ) (o) x-( p ) x^(( q )2( r ))( s ) (t))( u ) (v)

If (1^2-t_1)+(2^2-t_2)+….+(n^2-t_n)=(n(n^2-1))/(3) then t_n is equal to

If alpha,a n dbeta be t roots of the equation x^2+p x-1//2p^2=0,w h e r ep in Rdot Then the minimum value of alpha^4+beta^4 is 2sqrt(2) b. 2-sqrt(2) c. 2 d. 2+sqrt(2)