Home
Class 12
MATHS
Distance of the point P( vec c) from the...

Distance of the point `P( vec c)` from the line ` vec r= vec a+lambda vec b` is a. `|( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)|` b. `|( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)|` c. `|( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)|` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Distance of point P( vec p) from the plane vec rdot vec n=0 is a. | vec pdot vec n| b. (| vec pxx vec n|)/(| vec n|) c. (| vec pdot vec n|)/(| vec n|) d. none of these

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec v . vec a=0a n d vec v . vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) d. none of these

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

Find | vec a|a n d| vec b|,if( vec a+ vec b)dot( vec a- vec b) = 8 , | vec a|=8| vec b|dot

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

If non-zero vectors vec aa n d vec b are equally inclined to coplanar vector vec c ,t h e n vec c can be a. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+| vec b|) vec b b. (| vec b|)/(| vec a|+| vec b|)a+(| vec a|)/(| vec a|+| vec b|) vec b c. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+2| vec b|) vec b d. (| vec b|)/(2| vec a|+| vec b|)a+(| vec a|)/(2| vec a|+| vec b|) vec b

If vec x+ vec cxx vec y= vec a and vec y+ vec cxx vec x= vec b ,where vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c . vec a) vec c)/(1+ vec c . vec c) b. vec x=( vec cxx vec b+ vec b+( vec c . vec a) vec c)/(1+ vec c . vec c) c. vec y=( vec axx vec c+ vec b+( vec c . vec b) vec c)/(1+ vec c . vec c) d. none of these

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .