Home
Class 12
MATHS
The vector equation of the plane pass...

The vector equation of the plane passing through the origin and the line of intersection of the planes ` vec rdot vec a=lambdaa n d vec rdot vec b=mu` is a. ` vec rdot(lambda vec a-mu vec b)=0` b. ` vec rdot(lambda vec b-mu vec a)=0` c. ` vec rdot(lambda vec a+mu vec b)=0` d. ` vec rdot(lambda vec b+mu vec a)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of a line passing through the point vec a parallel to the plane vec rdot vec n=q and perpendicular to the line vec r= vec b+t vec c is a. vec r= vec a+lambda( vec nxx vec c) b. ( vec r- vec a)xx( vec nxx vec c) c. vec r= vec b+lambda( vec nxx vec c) d. none of these

The equation of the plane which passes through the line of intersection of planes vec rdot vec n_1=, q_1, vec rdot vec n_2=q_2 and the is parallel to the line of intersection of planers vec rdot vec n_3=q_3a n d vec rdot vec n_4-q_4 is

The equation of the plane which passes through the line of intersection of planes vec rdot vec n_1=, q_1, vec rdot vec n_2=q_2 and the is parallel to the line of intersection of planers vec rdot vec n_3=q_3a n d vec rdot vec n_4-q_4 is

Find | vec a|a n d| vec b|,if( vec a+ vec b)dot( vec a- vec b) = 8 , | vec a|=8| vec b|dot

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

Find the equation of a straight line in the plane vec r* vec n=d which is parallel to vec r= vec a+lambda vec b and passes through the foot of the perpendicular drawn from point P( vec a)to vec rdot vec n=d(w h e r e vec ndot vec b=0)dot a. vec r= vec a+((d- vec a*vec n)/(n^2))n+lambda vec b b. vec r= vec a+((d- vec a* vec n)/n)n+lambda vec b c. vec r= vec a+(( vec a* vec n-d)/(n^2))n+lambda vec b d. vec r= vec a+(( vec a* vec n-d)/n)n+lambda vec b

Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q

Distance of point P( vec p) from the plane vec rdot vec n=0 is a. | vec pdot vec n| b. (| vec pxx vec n|)/(| vec n|) c. (| vec pdot vec n|)/(| vec n|) d. none of these

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The lines vec r= vec a+lambda( vec bxx vec c)a n d vec r= vec b+mu( vec cxx vec a) will intersect if a. vec axx vec c= vec bxx vec c b. vec adot vec c= vec bdot vec c c. bxx vec a= vec cxx vec a d. none of these