Home
Class 12
MATHS
Consider the following linear equations:...

Consider the following linear equations: `a x+b y+c z=0` `b x+c y+a z=0` `c x+a y+b z=0` Match the expression/statements in column I with expression/statements in Column II. Column I, Column II `a+b+c!=0a n da^2+b^2+c^2=a b+b c+c a` , p. the equations represent planes meeting only at a single point `a+b+c=0a n da^2+b^2+c^2!=a b+b c+c a` , q. the equations represent the line `x=y=z` `a+b+c!=0a n da^2+b^2+c^2!=a b+b c+c a` , r. the equations represent identical planes `a+b+c!=0a n da^2+b^2+c^2!=a b+b c+c a` , s. the equations represent the whole of the three dimensional space

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation |a-x c b c b-x a b a c-x|=0w h e r ea+b+c!=0.

Let f(x)=a x^2+b x+c. Consider the following diagram. Then Fig c 0 a+b-c >0 a b c<0

Let a ,b ,c be real numbers with a^2+b^2+c^2=1. Show that the equation |a x-b y-c b x-a y c x+a b x+a y-a x+b y-cc y+b c x+a c y+b-a x-b y+c|=0 represents a straight line.

If a ,b ,c are different, then the value of |0x^2-a x^3-b x^2+a0x^2+c x^4+b x-c0|=0 is c b. c c. b d. 0

If the foot of the perpendicular from the origin to plane is P(a ,b ,c) , the equation of the plane is a. x/a=y/b=z/c=3 b. a x+b y+c z=3 c. a x+b y+c z=a^(2)+b^2+c^2 d. a x+b y+c z=a+b+c

If a ,b ,c in R^+a n d2b=a+c , then check the nature of roots of equation a x^2+2b x+c=0.

Consider the lines L_1:(x-1)/2=y/(-1)=(z+3)/1,L_2:(x-4)/1=(y+3)/1=(z+3)/2 and the planes P_1:7x+y+2z=3,P_2:3x+5y-6z=4. Let a x+b y+c z=d be the equation of the plane passing through the point match Column I with Column II. Column I, Column II a= , p. 13 b= , q. -3 c= , r. 1 d= , s. -2

The straight line a x+b y+c=0 , where a b c!=0, will pass through the first quadrant if (a) a c >0,b c >0 (b) ac >0 or b c 0 or a c >0 (d) a c<0 or b c<0

Show that the equations -2x+y+z=a,x-2y+z=b,x+y-2z=c are consistent only if a+b+c=0.

If x^2+3x+5=0a n da x^2+b x+c=0 have common root/roots and a ,b ,c in N , then find the minimum value of a+b+c