Home
Class 12
MATHS
Show that the straight lines whose direc...

Show that the straight lines whose direction cosines are given by the equations `al+bm+cn=0` and `u l^2+z m^2=v n^2+w n^2=0` are parallel or perpendicular as `a^2/u+b^2/v+c^2/w=0` or `a^2(v +w)+b^2(w+u)+c^2(u+v)=0`

Text Solution

Verified by Experts

Here, `l=-((bm+cn))/(a)and"ul"^(2)+m^(2)v+wn^(2)=0`.
Elimiating l, we get
`(u(bm+cn)^(2))/(a^(2))+vm^(2)+wn^(2)=0`
`u(b^(2)m^(2)+2bcmn+c^(2)n^(2))+va^(2)m^(2)+wa^(2)n^(2)=0`
`(b^(2)u+a^(2)v)m^(2)+(2bcu)m+(c^(2)u+a^(2)w)n^(2)=0`
or `(b^(2)u+a^(2)v)((m)/(n))^(2)+(2bcu)((m)/(n))`
`+(c^(2)u+a^(2)w)=0` which is quadratic in (m/n) having roots `m_(1)//n_(1)andm_(2)//n_(2)`
a. If the straight lines are parallel, the quadratic in m/n has equal roots, i.e., discriminant =0
`implies(2bcu)^(2)-4(b^(2)u+a^(2)v)(c^(2)u+a^(2)w)=`
or `b^(2)c^(2)u^(2)=(b^(2)u+a^(2)v)(c^(2)u+a^(2)w)`
or `a^(2)vw+b^(2)uw+c^(2)uv=0`
or `a^(2)/(u)+b^(2)/(v)+c^(2)/(w)=0`
b. If the straight lines are perpendicular, then
`(m_(1))/(n_(1))=(m_(2))/(n_(2))=(c^(2)u+a^(2)w)/(b^(2)u+a^(2)v )` (product of roots)
or `(m_(1)m_(2))/(c^(2)u+a^(2)w)=(n_(1)n_(2))/(b^(2)u+a^(2)w)" "(i)`
Similarly, by elimingting n, we get
`(l_(1)l_(2))/(b^(2)w+c^(2)v)=(m_(1)m_(2))/(c^(2)u+a^(2)w)" "(ii)`
From (i) and (ii),
`(l_(1)l_(2))/(b^(2)w+c^(2)v)=(m_(1)m_(2))/(c^(2)u+a^(2)w)=(n_(1)n_(2))/(b^(2)u+a^(2)v)=lamda`
Since they are perpendicular,
`l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2)=0`
or `lamda(b^(2)w+c^(2)v)+lamda(c^(2)u+a^(2)w)+lamda(b^(2)u+a^(2)v)=0`
or `a^(2)(v+w)+b^(2)(w+u)+c^(2)(u+v)=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

The pair of lines whose direction cosines are given by the equations 3l+m+5n=0a n d6m n-2n l+5l m=0 are a. parallel b. perpendicular c. inclined at cos^(-1)(1/6) d. none of these

Find the angle between the line whose direction cosines are given by l+m+n=0a n d2l^2+2m^2-n^2-0.

Check the dimensional correctness for the given equation. (a) v=u+at (b) s=ut+1/2at^2

Find the equation of the tangent to the c u r v ey={x^2sin1/x ,x!=0 0,x=0 at the origin

Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d| vec w|=3. If the projection of vec v along vec u is equal to that of vec w along vec u and vectors vec va n d vec w are perpendicular to each other, then | vec u- vec v+ vec w| equals a. 2 b. sqrt(7) c. sqrt(14) d. 14

If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, then the value of 3 cosec^(2) (tan^(-1) u + tan^(-1) v + tan^(-1 w) is ____

Let u-=a x+b y+a b3=0,v-=b x-a y+b a3=0,a ,b in R , be two straight lines. The equations of the bisectors of the angle formed by k_1u-k_2v=0 and k_1u+k_2v=0 , for nonzero and real k_1 and k_2 are u=0 (b) k_2u+k_1v=0 k_2u-k_1v=0 (d) v=0

Let a in (0,1) satisfies the equation a^(2008)-2a+1=0v a l u e s(s)toS is 2010 b. 2009 c. 2008 d. 2

Test dimensionally if the v^2=u^2+2ax may be correct.

Find the amplitude of the electric field in a parallel bean of light of intensity 2.0 W m^-2.