Home
Class 12
MATHS
A function f (x) is defined for all x in...

A function `f (x)` is defined for all `x in R` and satisfies, `f(x + y) = f (x) + 2y^2 + kxy AA x, y in R`, where `k` is a given constant. If `f(1) = 2 and f(2) = 8`, find `f(x)` and show that `f (x+y).f(1/(x+y))=k,x+y != 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfies f(x/y)=f(x)-f(y) for all x,y and f(e)=1. Then

A real valued function f (x) satisfies the functional equation f (x-y)= f(x) f(y) - f(a-x) f(a +y) where a is a given constant and f (0) =1, f(2a -x) is equal to

If F :R to R satisfies f(x +y ) =f(x) + f(y) for all x ,y in R and f (1) =7 , then sum_(r=1)^(n) f(R ) is

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

Find function f(x) which is differentiable and satisfy the relation f(x+y)=f(x)+f(y)+(e^(x)-1)(e^(y)-1)AA x, y in R, and f'(0)=2.

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

For each of the functions find the f _(x), f _(y), and show that f _(xy) = f _(yx). f (x,y) = (3x)/( y + sin x)