Home
Class 12
MATHS
If f(0)=0,f^(prime)(0)=2, then the deriv...

If `f(0)=0,f^(prime)(0)=2,` then the derivative of `y=f(f(f(x)))` at `x=0` is 2 (b) 8 (c) 16 (d) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the anti derivative F of f defined by f (x) = 4x^(3) - 6 , where F (0) = 3

A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+2y)+f(2x-2y))dot If f^(prime)(0)=1/2,t h e n (a) f''(x)=f(x)=0 (b) 4f''(x)+f(x)=0 (c) f''(x)+f(x)=0 (d) 4f''(x)-f(x)=0

Consider the function f(x)={xsin(pi/x) , for x >0 ,0 for x=0 The, the number of point in (0,1) where the derivative f^(prime)(x) vanishes is 0 (b) 1 (c) 2 (d) infinite

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

If f(x) is differentiable and strictly increasing function, then the value of ("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0)) is 1 (b) 0 (c) -1 (d) 2

Suppose that f(0)=0a n df^(prime)(0)=2, and let g(x)=f(-x+f(f(x)))dot The value of g' (0) is equal to _____

y=f(x) is a function which satisfies (i) f(0)=0 (ii) f^prime prime(x)=f^prime(x) and (iii) f^prime(0)=1 then the area bounded by the graph of y=f(x) , the lines x=0, x-1=0 and y +1=0 , is

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0fora l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d)none of these

Statement 1: If f(0)=0,f^(prime)(x)=ln(x+sqrt(1+x^2)), then f(x) is positive for all x in R_0dot Statement 2: f(x) is increasing for x >0 and decreasing for x<0