Home
Class 12
MATHS
if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies...

if `x=(1+t)/t^3 ,y=3/(2t^2)+2/t` satisfies `f(x)*{(dy)/(dx)}^3=1+(dy)/(dx)` then `f(x)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof|(dy)/(dx)-x((dy)/(dx))^3| is__________

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) then (dy)/(dx) at t=2 ………….

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

Solve : (dy)/(dx)=(3x+2y+1)^(2)

(1+x+xy^(2))(dy)/(dx)+(y+y^(3))=0

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)