Home
Class 12
MATHS
If f(x)={sin((a-x)/2)t a n[(pix)/(2a)] ...

If `f(x)={sin((a-x)/2)t a n[(pix)/(2a)]` for `x > a` and `([cos((pix)/(2a))])/(a-x)` for `x < a,` then `f(a^-)<0` b. `f` has a removable discontinuity at `x=a` c. `f` has an irremovable discontinuity at `x=a` d. `f(a^+)<0`

Promotional Banner

Similar Questions

Explore conceptually related problems

f'(sin^(2)x)lt f'(cos^(2)x) for x in

If f(a)=lim_(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2)], then

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>2

(cos2x)/(sin ^(2) x cos^(2) x)

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

Iff(x)=Asin((pix)/2)+b ,f^(prime)(1/2)=sqrt(2)a n d int_0^1f(x)dx=(2A)/pi,t h e ncon s t a n t sAa n dBa r e pi/2a n dpi/2 (b) 2/pia n d3/pi 0a n d-4/pi (d) 4/pia n d0

Iff(x)=sin(logx) then f(xy)+f( y x ​ )−2f(x)cos(logy) is equal to

If f(x)={x^2sin(pix)/2,|x|<1x|x|,|x|geq1,t h e nf(x)i s an even function (b) an odd function a periodic function (d) none of these

Let f(x)=[(1-sinpix)/(1+cos2pix), x<1/2 and p , x=1/2 and sqrt(2x-1)/(sqrt(4+sqrt(2x-1))-2) .Determine the value of p, if possible, so that the function is continuous at x = 1/2 .