Home
Class 12
MATHS
The function f(x)=cos^(-1)((2[|sinx|+|co...

The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Draw a graph of f(x) = sin {x} , where {x} represents the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Discuss the continuity of the function ([.] represents the greatest integer function): f(x)=[sin^(-1)x]

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Draw the graph of f(x)=[tan^(-1)x]," where "[*]" represents the greatest integer function".

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

Discuss the continuity of the function ([.] represents the greatest integer function): f(x)=[2/(1+x^2)],xgeq0

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).