Home
Class 12
MATHS
The domain of the function f(x)=loge {sg...

The domain of the function `f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x])`(where [] represents the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The number of elements in the domain of the function f(x)=sin^(-1)((x^2-2x)/3)+sqrt(([x]+[-x])) , (where [.] denotes the greater integer function) is equal to a. 4 b. 6 c. 3 d. 5

The domain of the function f (x) = (1)/(sqrt(9-x^2)) is

The domain of the function f(x) = sqrt( x^2 +1) is

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function

The period of the function f(x) = a^({ tan ( pi x) } +x -[x] ) , where a gt 0 , [x] denotes the greatest integer function and x is real number, is

For the function f(x)=x^4(12(log)_e x-7)

Draw the graph of f(x) = [log_(e)x], e^(-2) lt x lt 10 , where [*] represents the greatest integer function.