Home
Class 12
MATHS
Number of integers in the range of f(x)=...

Number of integers in the range of `f(x)=1/pi(sin^(-1)x+tan^(-1)x)+(x+1)/(x^2+2x+5)` is `0` b. `3` c. `2` d. `1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)=1/(1-3sqrt(1-sin^2x))

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

The number of integral values in the range of the function f(x)=sin^(-1)x-cot^(-1)x+x^(2)+2x +6 is

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)

Find the range of the function f(x)=(1)/(2+sin3x) .

f(x) = sin^(-1)x+x^(2)-3x + (x^(3))/(3),x in[0,1]

The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/2 is (a) 1 (b) 2 (c) 3 (d) 4

Solve : tan^(-1) ((x-2)/(x-3)) + tan^(-1) ((x+2)/(x+3)) = pi/4

The number of integer values of k for which the equation sin^(-1)x+tan^(-1)x=2k+1 has a solution is (a)1 (b) 2 (c) 3 (d) 4

The number of real values of x satisfying tan^-1(x/(1-x^2))+tan^-1 (1/x^3) = (3 pi)/4 is