Home
Class 12
MATHS
Number of points of discontinuity of f(x...

Number of points of discontinuity of `f(x)=[sin^(-1)x]-[x]` in its domain is equal to (where [.] denotes the greatest integer function) a. 0 b. 1`` c. 2 d. 3

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Period of f(x) = sgn([x] +[-x]) is equal to (where [.] denotes greatest integer function

Evaluate int_(-1)^(3)(x-[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(1)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(0)^(1.5) x[x^2] dx , where [.] denotes the greatest integer function

Evaluate int_(-1)^(1) (x-[x])dx , where [.] denotes the greatest integer function.

(lim)_(xvec(-1^)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is