Home
Class 12
MATHS
Let f: RvecR be a continuous function an...

Let `f: RvecR` be a continuous function and `f(x)=f(2x)` is true `AAx in Rdot` If `f(1)=3,` then the value of `int_(-1)^1f(f(x))dx` is equal to 6 (b) 0 (c) `3f(3)` (d) `2f(0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If a continuous function f on [0, a] satisfies f(x)f(a-x)=1, a >0, then find the value of int_0^a(dx)/(1+f(x))

f:[0,5]rarrR,y=f(x) such that f''(x)=f''(5-x)AAx in [0,5] f'(0)=1 and f'(5)=7 , then the value of int_(1)^(4)f'(x)dx is

Let f: R->R be a continuous onto function satisfying f(x)+f(-x)=0AAx in Rdot If f(-3)=2a n df(5)=4in[-5,5], then the minimum number of roots of the equation f(x)=0 is

Suppose f: RvecR^+ be a differentiable function such that 3f(x+y)=f(x)f(y)AAx ,y in R with f(1)=6. Then the value of f(2) is 6 b. 9 c. 12 d. 15

Let f be a continuous function satisfying f '(I n x)=[1 for 0 1 and f (0) = 0 then f(x) can be defined as