Home
Class 12
MATHS
If f(1)=3,f^(prime)(1)=2,f''(1)=4,t h e ...

If `f(1)=3,f^(prime)(1)=2,f''(1)=4,t h e n f^(-1)(3)=`
a. 1 b. `-1/2` c. -2 d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f^(prime)(x)=sqrt(2x^2-1)a n dy=f(x^2),t h e n(dy)/(dx)a tx=1 is 2 (b) 1 (c) -2 (d) none of these

If f(1)=3, f'(1) = 2, f''(1)=4 , then (f^-)''(3)= (where f^-1= inverse of y = f(x))

If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e^x)e^(f(x)) , then y^(prime)(0) is equal to a. 1 b. 2 c. 0 d. none of these

If f(x) is a polynomial satisfying f(x)f(1/x)=f(x)+f(1/x)a n df(3)=28 ,t h e nf(4) is equal to 63 (b) 65 (c) 17 (d) none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

Let f(x) be a polynomial of degree 3 such that f(3)=1,f^(prime)(3)=-1,f^('')(3)=0,a n df^(''')(3)=12. Then the value of f^(prime)(1) is (a) 12 (b) 23 (c) -13 (d) none of these

If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) {f(1)}^n (c) 0 (d) none of these

The function f(x)=e^x+x , being differentiable and one-to-one, has a differentiable inverse f^(-1)(x)dot The value of d/(dx)(f^(-1)) at the point f(log2) is (a) 1/(1n2) (b) 1/3 (c) 1/4 (d) none of these

A function f: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(y)+2. If differentiable on R-{0}a n df(2)=5,f^(prime)(x)=(f(x)-1)/xdotlambdat h e nlambda= 2^(prime)f(1) b. 3f^(prime)(1) c. 1/2f^(prime)(1) d. f^(prime)(1)

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0fora l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d)none of these