Home
Class 12
MATHS
Suppose that f(x) isa quadratic expresso...

Suppose that `f(x)` isa quadratic expresson positive for all real `xdot` If `g(x)=f(x)+f^(prime)(x)+f^(x),` then for any real `x(w h e r ef^(prime)(x)a n df^(x)` represent 1st and 2nd derivative, respectively). `g(x)<0` b. `g(x)>0` c. `g(x)=0` d. `g(x)geq0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose that f(x) isa quadratic expresson positive for all real xdot If g(x)=f(x)+f^(prime)(x)+f''(x), then for any real x(w h e r ef^(prime)(x)a n df^(x) represent 1st and 2nd derivative, respectively). a. g(x) 0 c. g(x)=0 d. g(x)geq0

Let f (x) be a quadratic expressinon which is positive for all real values of x, If g(x)=f(x)+f'(x)+f''(x), then for any real x

Let f(x)a n dg(x) be differentiable functions such that f^(prime)(x)g(x)!=f(x)g^(prime)(x) for any real xdot Show that between any two real solution of f(x)=0, there is at least one real solution of g(x)=0.

Evaluate: ifintg(x)dx=g(x),t h e nintg(x){f(x)+f^(prime)(x)}dx

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let f(x)a n dg(x) be two functions which are defined and differentiable for all xgeqx_0dot If f(x_0)=g(x_0)a n df^(prime)(x)>g^(prime)(x) for all x > x_0, then prove that f(x)>g(x) for all x > x_0dot

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

Let g(x)=1+x-[x] and f(x)={-1,x 0. Then for all x,f(g(x)) is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) f(x) (d) g(x)

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is