Home
Class 11
MATHS
If an and bn are positive integers and a...

If `a_n` and `b_n` are positive integers and `a_n+sqrt(2)b_n=(2+sqrt(2))^n ,t h e n(lim)_(x->oo)((a_n)/(b_n))=` a. 2 b. `sqrt(2)` c. `e^(sqrt(2))` d. `e^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If m , n are positive integers and m+nsqrt(2)=sqrt(41+24sqrt(2)) , then (m+n) is equal to

If x_1=3 and x_(n+1)=sqrt(2+x_n),ngeq1,t h e n""("lim")_(xrarroo)x_n is (a) -1 (b) 2 (c) sqrt(5) (d) 3

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Let: a_n=int_0^(pi/2)(1-sint)^nsin2tdt Then find the value of lim_(n->oo)na_n

The value of ("lim")_(xvecoo)[3sqrt((n+1)^2) -3sqrt((n-1)^2 ))] is_____

Evaluate: ("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

If C_(r ) = (n!)/(r!(n - r)!) , then prove that sqrt(C_(1)) + sqrt(C_(2)) + …. + sqrt(C_(n)) sqrt(n(2^(n) - 1))

If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s (a) x/(2y-1) (b) x/(2y+1) (c) 1/(x(2y-1)) (d) 1/(x(1-2y))

If n-1C_r=(k^2-3)^nC_(r+1), then (a) (-oo,-2] (b) [2,oo) (c) [-sqrt3, sqrt3] (d) (sqrt3,2]