Home
Class 11
MATHS
Set of all values of x such that (lim)(x...

Set of all values of `x` such that `(lim)_(xvecoo)1/(1+((4tan^(-1)(2pix))/pi)^(4n))` is non-zero and finite number when `n in N` is `(0,1/(2pi))` b. `(-1/pi,1/pi)` c. `[1/(2pi),1/(2pi)]` d. `(-1/(2pi),0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

The value of (lim)_(xvecoo)(tan^(-1)x))) is equal to (a)-1 (b) pi/2 (c) -1/(sqrt(2)) (d) 1/(sqrt(2))

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)

Find the value of tan(2tan^(-1)((1)/(5))-(pi)/(4))

Provethat int_(0)^((pi)/(2))(dx)/(1+tanx)=(pi)/(4)

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

lim_(xrarr(pi)/(2)) ((1-sinx)(8x^(3)-pi^(3))(cosx))/(pi-2x)^(4)

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

Let f:(-1,1)rarrB be a function defined by f(x)=tan^(-1)[(2x)/(1-x^2)] . Then f is both one-one and onto when B is the interval. (a) [0,pi/2) (b) (0,pi/2) (c) (-pi/2,pi/2) (d) [-pi/2,pi/2]