Home
Class 11
MATHS
lim x→(2^+) { x } sin( x−...

`lim x→(2^+) { x } sin( x−2 ) /( x−2)^2 =` (where [.] denotes the fractional part function) a. 0 b. 2 c. 1 d. does not exist

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(xrarr2^(+))(lim){x}(sin(x-2))/((x-2)^(2)) = (where {.} denotes the fractional part function)

Solve : x^(2) = {x} , where {x} represents the fractional part function.

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] b/a b. 0 c. a/b d. does not exist

(lim)_(xvec(-1^)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

Draw the graph of y= 2^({x}) , where {*} represents the fractional part function.

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)