Home
Class 11
MATHS
If A=lim(x->0)sin^(-1)(sinx)/(cos^(-1)(c...

If `A=lim_(x->0)sin^(-1)(sinx)/(cos^(-1)(cosx))` and `B=lim_(x->0)[|x|]/x` then (where [.] denotes greatest integer function)(A) A=1 (B) A does not exist (C) B = 0 (D) B=1

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xto0)(e^(sinx)-1)/x=

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

(lim)_(xvec(-1^)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

lim_(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denotes the greatest integer function)

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.