Home
Class 12
MATHS
Eight players P1, P2, P3, ...........P8...

Eight players `P_1, P_2, P_3, ...........P_8`, play a knock out tournament. It is known that whenever the players `P_i and P_j`, play, the player `P_i` will win if `i lt j`. Assuming that the players are paired at random in each round, what is the probability that the players `P_4`, reaches the final ?

Text Solution

Verified by Experts

`P_(1) P_(2) P_(3) P_(4) P_(5) P_(6) P_(7) P_(8)`
Given that if `P_(i), P_(j)` play with `i lt j`, then `P_(i)` will win. For the first round, `P_(4)` should be paired with any one from `P_(5)` to `P_(8)`. It can be done in `.^(4)C_(1)` ways. Then `P_(4)` to be the finalist, at least one player from `P_(5)` to `P_(8)` should reach in the second round. Therefore, one pair should be from remaining 3 from `P_(5)` to `P_(8)` in `.^(3)C_(2)`. Then round, we have four players. Favorable ways is 1.
Now, total possible pairings is
`(.^(8)C_(2) xx .^(6)C_(2) xx .^(4)C_(2)xx .^(2)C_(2))/(4!) xx (.^(4)C_(2)xx .^(2)C_(2))/(2!)`
Therefore, the probability is
`(.^(4)C_(1).^(3)C_(2).^(3)C_(2)4!2!)/(.^(8)C_(2).^(6)C_(2).^(4)C_(2).^(2)C_(2).^(4)C_(2).^(2)C_(2))=(4)/(35)`
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY I

    CENGAGE|Exercise Solved Example|1 Videos
  • PROBABILITY I

    CENGAGE|Exercise Exercise 9.1|6 Videos
  • PROBABILITY AND STATISTICS

    CENGAGE|Exercise Question Bank|24 Videos
  • PROBABILITY II

    CENGAGE|Exercise JEE Advanced Previous Year|25 Videos

Similar Questions

Explore conceptually related problems

8n players P_1, P_2, P_3, ,P_(8n) play a knock out tournament. It is known that all the players are of equal strength. The tournament is held in three rounds where the players are paired at random in each round. If it is given that P_1 Wins in the third round .Find the probability of P_2 loses in the second round.

Sixteen players S_1,S_2, ..., S_(16) play in a tournament. They are divided into eight pairs at random. From each pair a winner is decided on the basis of a game played between the two players of the pair. Assume that all the players are of equal strength.Find the probability that the player S_1 is among the eight winners.

Sixteen players S_(1),S_(2),…,S_(16) play in a tournament. They are divided into eight pairs at random. From each pair a winner is decided on the basis of a game played between the two players decided to the basis of a game played between the two players of the pair. Assume that all the players are of equal strength. (a) Find the prabability that the player S_(1) is among the eight winners. (b) Find the probability that exactly one of the two players S_(1)and S_(2) is among the eight winners.

Thirty-two players ranked 1 to 32 are playing in a knockout tournament. Assume that in every match between any two players the better ranked player wins, the probability that ranked 1 and ranked 2 players are winner and runner up respectively is p, then the value of [2//p] is, where [.] represents the greatest integer function,_____.

2^n players of equal strength are playing a knock out tournament. If they are paired at randomly in all rounds, find out the probability that out of two particular players S_1a n dS_2, exactly one will reach in semi-final (n in N ,ngeq2)dot

5 players of equal strength play one each with each other. P(A)= probability that at least one player wins all matches he (they) play. P(B)= probability that at least one player losses all his (their) matches.

Thirty two players ranked 1 to 32 are playing is a knockout tournament. Assume that in every match between any two players, the better ranked player wins the probability that ranked 1 and ranked 2 players are winner and runner up, respectively, is (A) 16/31 (B) 1/2 (C) 17/31 (D) none of these

In a knockout tournament 2^(n) equally skilled players, S_(1),S_(2),….S_(2n), are participatingl. In each round, players are divided in pair at random and winner from each pair moves in the next round. If S_(2) reaches the semi-final, then the probability that S_(1) wins the tournament is 1/84. The value of n equals _______.

Sixteen players S_(1) , S_(2) , S_(3) ,…, S_(16) play in a tournament. Number of ways in which they can be grouped into eight pairs so that S_(1) and S_(2) are in different groups, is equal to

At a fete, cards bearing numbers 1 to 1000, one number on one card are put in a box. Each player selects one card at random and that card is not replaced. If the selected card has a perfect square number greater than 500, the player wins a prize. What is the probaility that (i) the first player wins a prize (ii) the second player wins a prize, if the first has won ?