Home
Class 12
MATHS
In a binomial distribution B(n , p=1/4) ...

In a binomial distribution `B(n , p=1/4)` , if the probability of at least one success is greater than or equal to `9/(10)` , then n is greater than (1) `1/((log)_(10)^4-(log)_(10)^3)` (2) `1/((log)_(10)^4+(log)_(10)^3)` (3) `9/((log)_(10)^4-(log)_(10)^3)` (4) `4/((log)_(10)^4-(log)_(10)^3)`

A

`(1)/("log"_(10)4-"log"_(10)3)`

B

`(1)/("log"_(10)4+"log"_(10)3)`

C

`(9)/("log"_(10)4-"log"_(10)3)`

D

`(4)/("log"_(10)4-"log"_(10)3)`

Text Solution

Verified by Experts

The correct Answer is:
A

`1-q^(n) ge (9)/(10)`
`implies ((3)/(4))^(n) le (1)/(10)`
`implies n ge -"log"_(3//4)10`
`implies n ge (1)/("log"_(10)4-"log"_(10)3)`
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    CENGAGE|Exercise Exercise (Single)|39 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • STRAIGHT LINE

    CENGAGE|Exercise Multiple Correct Answers Type|8 Videos

Similar Questions

Explore conceptually related problems

Solve: ((1/2)^(log(10)a^2) +2>3/(2^((log)_(10)(-a))))

Solve: |x-1|^((log)_(10)x)^2-(log)_(10)x^2=|x-1|^3

The global maximum value of f(x0=(log)_(10)(4x^3-12 x^2+11 x-3),x in [2,3], is -3/2(log)_(10)3 (b) 1+(log)_(10)3 (log)_(10)3 (d) 3/2(log)_(10)3

Prove that 1/3<(log)_(10)3<1/2dot

(10x^(9) + 10^(x) log , 10)/(10^(x)+ x^(10))

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

Find the domain of the function : f(x)=sqrt((log)_(10){((log)_(10)x)/(2(3-(log)_(10)x)}}

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)

If n >1,t h e np rov et h a t 1/((log)_2n)+1/((log)_3n)++1/((log)_(53)n)=1/((log)_(53 !)n)dot