Home
Class 12
MATHS
If vec r is a vector of magnitude 21 ...

If ` vec r` is a vector of magnitude 21 and has direction ratios `2,-3a n d6,` then find ` vec rdot`

Text Solution

Verified by Experts

The direction ratios of the `vecr` are 2, -3 and 6.
Therefore, its distance cosines are `l=(2)/(7), m=(-3)/(7) and n=(6)/(7)`. Therefore,
`" "vecr=|vecr|(lhati+mhatj+nhatk)=21((2)/(7)hati-(3)/(7)hatj+(6)/(7)hatk)`
`" "=6hati-9hatj+18hatk`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise 3.2|15 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise 3.3|19 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise JEE Previous Year|26 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

If vec(A) is a vector of magnitude 4 units due east. What is the magnitude and direction of a vector - 4 vec(A) ?

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec adot vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is a. pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

If vec rdot hat i= vec rdot hat j= vec rdot hat ka n d| vec r|=3, then find the vector vec rdot

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot

Given | vec a|=| vec b|=1a n d| vec a+ vec b|=sqrt(3). If vec c is a vector such that vec c- vec a-2 vec b=3( vec axx vec b), then find the value of vec c dot vec b

Let vec a=- hat i- hat k , vec b=- hat i+ hat ja n d vec c= hat i+2 hat j+3 hat k be three given vectors. If vec r is a vector such that vec rxx vec b= vec cxx vec b and vec r . vec a=0, then find the value of vec r . vec bdot

vec a , vec b ,a n d vec c are three vectors of equal magnitude. The angel between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=6. Then | vec a| is equal to 2 b. -1 c. 1 d. sqrt(6)//3

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot