Home
Class 12
MATHS
Show that the straight lines whose direc...

Show that the straight lines whose direction cosines are given by the equations `a l+b m+c n=0a n dul^2+z m^2=v n^2+w n^2=0` are parallel or perpendicular as `(a^2)/u+(b^2)/v+(c^2)/w=0ora^2(v+w)+b^2(w+u)+c^2(u+v)=0.`

Text Solution

Verified by Experts

Here, `l=-((bm+cn))/(a)and"ul"^(2)+m^(2)v+wn^(2)=0`.
Elimiating l, we get
`(u(bm+cn)^(2))/(a^(2))+vm^(2)+wn^(2)=0`
`u(b^(2)m^(2)+2bcmn+c^(2)n^(2))+va^(2)m^(2)+wa^(2)n^(2)=0`
`(b^(2)u+a^(2)v)m^(2)+(2bcu)m+(c^(2)u+a^(2)w)n^(2)=0`
or `(b^(2)u+a^(2)v)((m)/(n))^(2)+(2bcu)((m)/(n))`
`+(c^(2)u+a^(2)w)=0` which is quadratic in (m/n) having roots `m_(1)//n_(1)andm_(2)//n_(2)`
a. If the straight lines are parallel, the quadratic in m/n has equal roots, i.e., discriminant =0
`implies(2bcu)^(2)-4(b^(2)u+a^(2)v)(c^(2)u+a^(2)w)=`
or `b^(2)c^(2)u^(2)=(b^(2)u+a^(2)v)(c^(2)u+a^(2)w)`
or `a^(2)vw+b^(2)uw+c^(2)uv=0`
or `a^(2)/(u)+b^(2)/(v)+c^(2)/(w)=0`
b. If the straight lines are perpendicular, then
`(m_(1))/(n_(1))=(m_(2))/(n_(2))=(c^(2)u+a^(2)w)/(b^(2)u+a^(2)v )` (product of roots)
or `(m_(1)m_(2))/(c^(2)u+a^(2)w)=(n_(1)n_(2))/(b^(2)u+a^(2)w)" "(i)`
Similarly, by elimingting n, we get
`(l_(1)l_(2))/(b^(2)w+c^(2)v)=(m_(1)m_(2))/(c^(2)u+a^(2)w)" "(ii)`
From (i) and (ii),
`(l_(1)l_(2))/(b^(2)w+c^(2)v)=(m_(1)m_(2))/(c^(2)u+a^(2)w)=(n_(1)n_(2))/(b^(2)u+a^(2)v)=lamda`
Since they are perpendicular,
`l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2)=0`
or `lamda(b^(2)w+c^(2)v)+lamda(c^(2)u+a^(2)w)+lamda(b^(2)u+a^(2)v)=0`
or `a^(2)(v+w)+b^(2)(w+u)+c^(2)(u+v)=0`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise SUBJECTIVE TYPE|1 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Single)|86 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise 3.4|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

Show that the straight lines whose direction cosines are given by the equations al+bm+cn=0 and u l^2+z m^2=v n^2+w n^2=0 are parallel or perpendicular as a^2/u+b^2/v+c^2/w=0 or a^2(v +w)+b^2(w+u)+c^2(u+v)=0

Find the angle between the lines whose direction cosines are connected by the relations l+m+n=0a n d2lm+2n l-m n=0.

The pair of lines whose direction cosines are given by the equations 3l+m+5n=0a n d6m n-2n l+5l m=0 are a. parallel b. perpendicular c. inclined at cos^(-1)(1/6) d. none of these

Find the angle between the line whose direction cosines are given by l+m+n=0a n d2l^2+2m^2-n^2-0.

If the roots of the equation x^(3) -10 x + 11 = 0 are u, v, and w, then the value of 3 cosec^(2) (tan^(-1) u + tan^(-1) v + tan^(-1 w) is ____

For any two vectors vec ua n d vec v prove that ( vec u . vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d| vec w|=3. If the projection of vec v along vec u is equal to that of vec w along vec u and vectors vec va n d vec w are perpendicular to each other, then | vec u- vec v+ vec w| equals a. 2 b. sqrt(7) c. sqrt(14) d. 14

Let u-=a x+b y+a b3=0,v-=b x-a y+b a3=0,a ,b in R , be two straight lines. The equations of the bisectors of the angle formed by k_1u-k_2v=0 and k_1u+k_2v=0 , for nonzero and real k_1 and k_2 are u=0 (b) k_2u+k_1v=0 k_2u-k_1v=0 (d) v=0

Let a in (0,1) satisfies the equation a^(2008)-2a+1=0v a l u e s(s)toS is 2010 b. 2009 c. 2008 d. 2

Let a, b, c, d be real numbers in G.P. If u, v, w satisfy the system of equations u + 2v +3w = 6,4u + 5v + 6w =12 and 6u + 9v = 4 then show that the roots of the equation (1/u+1/v+1/w)x^2+[(b-c)^2+(c-a)^2+(d-b)^2]x+u+v+w=0 and '20x^2 +10(a-d)^2 x-9=0 are reciprocals of each other.