Home
Class 12
MATHS
Find vec a . vec b, when vec a = hat i ...

Find `vec a . vec b`, when `vec a = hat i +3 hat j + hat k` and `vec b = 2 hat i - hat j - hat k`

Text Solution

Verified by Experts

The correct Answer is:
a, c

Plane `P_(1)` contains the line
`vecr=hati+hatj+hatk+lamda(hati-hatj-hatk)`, hence contains the point `hati+hatj+hatk` and is normal to vector `(hati+hatj)`.
Hence, equation of plane is
`" "(vecr-(hati+hatj+hatk))*(hati+hatj)=0`
or `" "x+y=2`
Plane `P_(2)` contains the line
`" "vecr=hati+hatj=hatk+lamda(hati-hatj-hatk)` and point `hatj`
Hence, equation of plane is
`|{:(x-0,,y-1,,z-0),(1-0,,1-1,,1-0),(1,,-1,,-1):}|=0`
or `" "x+2y-z=2`
If `theta` is the acute angle between `P_(1) and P_(2)`, then
`" "costheta= (vec(n_1)*vec(n_2))/(|vec(n_1)||vec(n_2)|)=|((hati+hatj)*(hati+2hatj-hatk))/(sqrt2*sqrt6)|`
`" "= (3)/(sqrt2*sqrt6)= (sqrt(3))/(2)`
`" "theta=cos^(-1)""(sqrt(3))/(2)= (pi)/(6)`
As `L` is containec in `P_(2) rArr theta=0`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Reasoning Questions)|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Comprehension)|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Single)|86 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

Find the angle between vec a and vec b , when vec a = hat i +3 hat j + hat k and vec b = 2 hat i - hat j - hat k

Find vec a. vec b , when vec a = hat i + hat j + 2 hat k and vec b = 3 hat i + 2 hat j - hat k .

Find vec a . vec b , When vec a = hat i + hat j + 2 hat k and vec b = 3 hat i +2 hat j - hat k

Find vec a . vec b , When vec a = 2 hat i +2 hat j - hat k and vec b = 6 hat i -3 hat j +2 hat k

Find vec a . vec b , When vec a = hat i + hat j - 2 hat k and vec b = 3 hat i +2 hat j + hat k

Find a unit vector perpendicular to each of the vector vec a+ vec b and vec a - vec b , where vec a = 3 hat i + 2 hat j + 2 hat k and vec b = hati + 2 hat j - 2 hat k .

Find veca. vec b when veca = 2 hat i + 2 hat j - hat k and vec b = 6 hat i - 3 hat j + 2 hat k .

Find |vec a xx vec b| if vec a = 2 hat i - hat j + 3 hat k and vec b = 3 hat i - 5 hat j + 2 hat k .

Find the unit vector along vec a - vec b where veca = hat i + 3 hat j - hat k and vec b = 3 hat i + 2 hat j + hat k .

Find |vec a xx vec b| if vec a = hat i -7 hat j + 7 hat k and vec b = 3 hat i - 2 hat j + 2 hat k .