Home
Class 12
MATHS
Prove that the vectors vec a= hat i+ 2 ...

Prove that the vectors ` vec a= hat i+ 2 hat j +3 hat k` and `vec b=2 hat i- hat j` are perpendicular.

Text Solution

Verified by Experts

The correct Answer is:
`a to r; b to p; c to q; d to s`

The given line and plane are `vecr= (2hati-2hatj+3hatk)+lamda(hati-hatj+4hatk) and vecr*(hati+5hatj+hatk)=5`, respectively. Since `(hati-hatj+4hatk)*(hati+5hatj+hatk)=0`, line and plane are parallel.
Hence, the required distance is equal to distance of point `(2, -2, 3)` from the plane `x+5y+z-5=0`, which is `(|2-10+3-5|)/(sqrt(1+25+1))= (10)/(3sqrt(3))`
b. The distance between two parallel planes `vecr*(2i-j+3k)=4 and vecr*(6i-3j+9k)+13=0` is
`" "d= (|4-(-13//3)|)/(sqrt((2)^(2)+ (-1)^(2)+ (3)^(2))) = ((25//3))/(sqrt(14))`
`" "=(25)/(3sqrt(14))`
c. The perpendicular distance of the point `(2, 5, -3)` fromt the plane `vecr*(6i-3j+2k)=4 or 6x-3y+2z-4=0` is
`" "d= (|12-15-6-4|)/(sqrt(36+9+4))`
`" "=13//sqrt(49)= 13//7`
d. The equation of the line `AB` is
`" "(x-2)/(2)= (y+2)/(3)= (z-6)/(-6)`
The equation of line passing through `(1, 0, -3)` and parallel to `AB` is
`" "(x-1)/(2)= (y)/(3)= (z+3)/(-6)= r` (say)

The coordinates of any point on line `P(2r+1, 3r, -6r-3)` which lie on plane
`" "(2r+1)- (3r)- (-6r-3)=9`
`" "r=1`
Point `P-= (3, 3, -9)`
Required distance
`" "PQ= sqrt((3-1)^(2)+ (3-0)^(2)+ (-9+3)^(2))`
`" "=sqrt(4=9+36)= 7`
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Numerical)|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise JEE Previous Year|26 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Comprehension)|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|12 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

Prove that the vectors vec a = 3 hat i + hat j +3 hat k and vec b = hat i - hat k are perpendicular.

A vector of magnitude sqrt(2) coplanar with the vecrtor vec a= hat i+ hat j+2 hat ka n d vec b= hat i+2 hat j+ hat k , and perpendicular to the vector vec c= hat i+ hat j+ hat k , is a. - hat j+ hat k b. hat i- hat k c. hat i- hat j d. hat i- hat j

Find angle theta between the vectors vec a = hat i + hat j - hat k and vec b = hat i - hat j + hat k .

Show that the vectors vec a = hat i-2 hat j+3 hat k and vec b=-2 hat i+3 hat j -4 hat k and vec c = hat i -3 hat j +5 hat k are coplanar

Show that the vectors vec a = hat i - 2 hat j + 3 hat k , vec b = -2 hat i +3hat j - 4 hat k and vec c = hat i - 3 hat j + 5 hat k are coplanar.

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a = hat i - hat j + 3 hat k and vec b = 2 hat i - 7 hat j + hat k .

Find a unit vector perpendicular to each of the vector vec a = hat i - 2 hat j + 3 hat k and vec b = hat i + 2hat j - hat k .

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors vec a = 2 hat i + 3 hat j - hat k and vec b = hat i - 2 hat j+ hat k

Show that the vectors vec a = hat i - 2 hat j + 3 hat k, vec b = -2 hat i + 3 hat j - 4 hat k and vec c = hat i - 3 hat j + 5 hat k are coplanar.

A vector of magnitude 7 units, parallel to the resultant of the vectors vec a = 2 hat i - 3 hat j - 2 hat k and vec b = - hat i + 2 hat j + hat k and vec c = - hat i + 2 hat j + hat k