Home
Class 12
MATHS
If |f(x)|lex^(2), then prove that lim(xt...

If `|f(x)|lex^(2),` then prove that `lim_(xto0) (f(x))/(x)=0.`

Text Solution

Verified by Experts

We have `|f(x)|lex^(2)`
`:." "|(f(x))/(x)|le|x|`
`implies" "underset(xto0)lim|(f(x))/(x)|leunderset(xto0)lim|x|`
`implies" "|underset(xto0)lim(f(x))/(x)|le0`
`implies" "|underset(xto0)lim(f(x))/(x)|=0`
`implies" "underset(xto0)lim(f(x))/(x)=0`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.3|15 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.1|10 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(tan2x)/x

lim_(xto0)(e^(sinx)-1)/x=

lim_(xto0)(1+x)^(1/(3x))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

lim_(xto0)(2^(x)-3^(x))/x

lim_(xto0)(tan2x)/(sin5x)

lim_(xto0)(sqrt(1+x)-1)/x

Evaluate lim_(xto0)(a+bx)/(c+x)

lim_(xto0)(1-cosx)/x^(2)

Evaluate lim_(xto0) (logcosx)/(x)