Home
Class 12
MATHS
Evaluate lim(hto0) (2[sqrt(3)sin((pi)/(6...

Evaluate `lim_(hto0) (2[sqrt(3)sin((pi)/(6)+h)-cos((pi)/(6)+h)])/(sqrt(3)h(sqrt(3)cosh-sinh)).`

Text Solution

Verified by Experts

The correct Answer is:
`4//3`

`underset(hto0)lim(2[sqrt(3)sin((pi)/(6)+h)-cos((pi)/(6)+h)])/(sqrt(3)h(sqrt(3)cosh-sinh))`
`underset(hto0)lim((4)/sqrt(3)[sqrt(3)/(2)sin((pi)/(6)+h)-(1)/(2)cos((pi)/(6)+h)])/(h(sqrt(3)cosh-sinh))`
`=underset(hto0)lim(4)/(sqrt(3))xx(sinh)/(h)(1)/((sqrt(3)cosh-sinh))=4/3`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.7|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.4|5 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(hvec0)(2[sqrt(3)sin(pi/6+h)-cos(pi/6+h)])/(sqrt(3)h(sqrt(3)cosh-sinh)

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

Evaluate lim_(hto0) [(1)/(h^(3)sqrt(8+h))-(1)/(2h)].

Evaluate cos[cos^(-1)((-sqrt(3))/(2)+(pi)/(6))]

Evaluate lim_(xto1) ("cos"(pi)/(2)x)/(1-sqrt(x))

Evaluate the limit lim_(x to 0) (sqrt(x+3)-sqrt3)/x

Evaluate lim_(hto0) (log_(e)(1+2h)-2log_(e)(1+h))/(h^(2)).

Evaluate int_((pi)/(6))^((pi)/(3))(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

lim_(xrarroo) x^(2)sin(log_(e)sqrt(cos(pi)/(x)))