Home
Class 12
MATHS
lim(xtoa) (log(x-a))/(log(e^(x)-e^(a)))...

`lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))`

Text Solution

Verified by Experts

The correct Answer is:
1

`underset(xtoa)lim(log(x-a))/(log(e^(x)-a^(a)))`
`=underset(xtoa)lim((1)/(x-a))/(e^(x)/(e^(x)-e^(a)))" "`(Applying L'Hospital's rule)
`=underset(xtoa)lim(e^(x)-e^(a))/(e^(x)(x-a))`
`=underset(xtoa)lim(e^(a)(e^(x-a)-1))/(e^(x)(x-a))`
=1
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.7|7 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.5|12 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(log(1+3x^(2)))/(x(e^(5x)-1)) =

lim_(xtooo){x[log(x+a)-log(x)]}

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=

Let f(x) be defined for all x in R such that lim_(xrarr0) [f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0 . Then f(0) is

Evaluate lim_(xto1) (x^(2)+xlog_(e)x-log_(e)x-1)/((x^(2))-1)

If int((log_(ex)e)(log_(e^(2)x)e)log_(e^(3)x) e))1/x dx = Alog |1+logx|+B log |2+log x|+C log |3+ logx| +D then A-B+C is equal to

The value of lim_(x to oo ) (x-x^(2)log_(e)(1+(1)/(x))) is _______.

Evaluate lim_(hto0) (log_(e)(1+2h)-2log_(e)(1+h))/(h^(2)).