Home
Class 12
MATHS
Let f :RtoR be a positive, increasing fu...

Let `f :RtoR` be a positive, increasing function with
`lim_(xtooo) (f(3x))/(f(x))=1`. Then `lim_(xtooo) (f(2x))/(f(x))` is equal to

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)` is a positive increasing function. Therefore,
`0ltf(x)ltf(2x)ltf(3x)`
`implies" "0lt1lt(f(2x))/(f(x))lt(f(3x))/(f(x))`
`implies" "underset(xtooo)lim1ltunderset(xtooo)lim(f(2x))/(f(x))ltunderset(xtooo)lim(f(3x))/(f(x))" "(becauseunderset(xtooo)lim(f(3x))/(f(x))=1)`
By Sandwich theorem, we get
`underset(xtooo)lim(f(2x))/(f(x))=1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xtooo)(1/x+2)

lim_(xtooo)(sinx)/x

Knowledge Check

  • If lim_(xto)(f(x))/(x^(2))=k then lim_(xto1)f(x)=

    A
    0
    B
    1
    C
    k
    D
    not defined
  • Similar Questions

    Explore conceptually related problems

    lim_(xtooo)(a^(x)-b^(x))/x=

    lim_(xtooo)(1+3/x)^(x+2)

    lim_(xtooo)(1+k/x)^(m/x)

    Evaluate lim_(xtooo) x^((1)/(x)).

    Let f(x)=lim_(ntooo) (x)/(x^(2n)+1). Then

    lim_(xtooo)(1+1/x)^(7x)

    Evaluate lim_(xtooo) (1+(2)/(x))^(x).