Home
Class 12
MATHS
Show that the lim(xto2) ((sqrt(1-cos{2(x...

Show that the `lim_(xto2) ((sqrt(1-cos{2(x-2)}))/(x-2))` doesnot exist.

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(xto2)lim((sqrt(1-cos2(x-2)))/(x-2))=underset(xto2)lim(sqrt(2)|sin(x-2)|)/(x-2)`
Now, `underset(xto2^(+))lim(sqrt(2)|sin(x-2)|)/(x-2)=underset(xto2^(+))lim(sqrt(2)sin(x-2))/(x-2)=sqrt(2)`
and `underset(xto2^(-))lim(sqrt(2)|sin(x-2)|)/(x-2)=underset(xto2^(-))lim(-sqrt(2)sin(x-2))/((x-2))=-sqrt(2)`
Hence, limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto1)(sqrt(1-cos2(x-1)))/(x-1) is

lim_(xto0)(sqrt(1-cos2x))/x

lim_(xto5)(sqrt(x-1)-2)/(x-5)

lim_(xto0)(sqrt(1-x)-1)/x^(2)

lim_(xto0)(sqrt2-sqrt(1+cosx))/(sin^(2)x)

lim_(xto0)(1-cos2x)/(2x^(2)) is

lim_(xto0)(1-cos^(2)x)/(xsin2x)

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(xto0)(sqrt(1+x^(2))-1)/(1-cosx)=