Home
Class 12
MATHS
Let p=lim(xto0^(+))(1+tan^(2)sqrt(x))^((...

Let `p=lim_(xto0^(+))(1+tan^(2)sqrt(x))^((1)/(2x))`. Then `log_(e)p` is equal to

Text Solution

Verified by Experts

The correct Answer is:
B

`p=underset(xto0^(+))lim(1+tan^(2)sqrt(x))^((1)/(2x))(1^(oo)" form")`
`=e^(underset(xto0)lim(1+tan^(2)sqrt(x)-1)(1)/(2x))=e^(underset(xto0+)lim((tansqrt(x))^(2))/(2(sqrt(x))^(2)))=e^((1)/(2))`
`:." "log_(e)p=log_(e)^((1)/(2))=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise JEE Advanced Previous Year|7 Videos
  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(xto0)(tan2x)/x

lim_(xto0)(tan2x)/(sin5x)

lim_(xto0)(3^(x)-1)/(sqrt(x+1)-1)

lim_(xto0)(1-cosx)/x^(2)

lim_(xto0)(1+x)^(1/(3x))

lim_(xto0)(sqrt2-sqrt(1+cosx))/(sin^(2)x)

lim_(xto0)(1-cos^(2)x)/(xsin2x)

lim_(xto0^(-))(1)/(3-2^((1)/(x))) is equal to

lim_(xto0)(8^(x)-4^(x)-2^(x)+1^(x))/x^(2)=