Home
Class 12
MATHS
If P Q is a double ordinate of the hyper...

If `P Q` is a double ordinate of the hyperbola `(x^2)/(a^2)-(y^2)/(b^2)=1` such that `O P Q` is an equilateral triangle, `O` being the center of the hyperbola, then find the range of the eccentricity `e` of the hyperbola.

Text Solution

Verified by Experts


Let the hyperbola be `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`
and any double ordinate PQ be such that `P-=(a sec theta,b tan theta)`.
`therefore" "Q-=(a sec theta, -b tan theta)`
According to the question, triangle OPQ is equilateral.
`therefore" "tan30^(@)=(b tan theta)/(a sec theta)`
`rArr" "3(b^(2))/(a^(2))="cosec"^(2)theta`
`rArr" "3(e^(2)-1)="cosec"^(2)theta`
Now, `"cosec"^(2)thetage1`
`rArr" "3(e^(2)-1)ge1`
`rArr" "e^(2)ge(4)/(3)`
`rArr" "ege(2)/(sqrt3)`
Promotional Banner

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.1|3 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise 7.2|12 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|21 Videos

Similar Questions

Explore conceptually related problems

If the latus rectum of a hyperbola forms an equilateral triangle with the vertex at the center of the hyperbola ,then find the eccentricity of the hyperbola.

P is a point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transvers axis at Tdot If O is the center of the hyperbola, then find the value of O TxO Ndot

P and Q are the foci of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and B is an end of the minor axis. If P B Q is an equilateral triangle, then the eccentricity of the ellipse is

A variable chord of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1,(b > a), subtends a right angle at the center of the hyperbola if this chord touches. a fixed circle concentric with the hyperbola a fixed ellipse concentric with the hyperbola a fixed hyperbola concentric with the hyperbola a fixed parabola having vertex at (0, 0).

The eccentricity of the hyperbola (y^(2))/(9)-(x^(2))/(25)=1 is …………………

If it is possible to draw the tangent to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 having slope 2, then find its range of eccentricity.

If the normal at a pont P to the hyperbola x^2/a^2 - y^2/b^2 =1 meets the x-axis at G , show that the SG = eSP.S being the focus of the hyperbola.

The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1 . If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

If the latus rectum subtends a right angle at the center of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , then find its eccentricity.

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to